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Abstract

We describe EDSE, a model-based event-driven simulator implemented for SELMON, a

tool for sensor selection and anomaly detection in real-time monitoring. The simulator

is used in conjunction with a causal model to predict future behavior of the model from

observed data. The behavior of the causal model is interpreted as equivalent to the

behavior of the physical system being modeled.

This report provides an overview of the functionality of the simulator and the model-

based event-driven simulation paradigm on which it is based. Included are high-level

descriptions of the following key properties: event consumption and event creation,

iterative simulation, synchronization and filtering of monitoring data from the physical

system. Finally, we discuss how EDSE stands with respect to the relevant open issues of

discrete-event and model-based simulation.
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1 Introduction

This report describes EDSE (event-driven simulation engine), a model-based event-driven

simulator implemented for the SELMON (selective monitoring) tool [Chien et al., 1992;

Doyle et al., 1992]. In SELMON, the simulator is used in conjunction with a causal model to

predict future behavior of a physical system from observed data. Observations of physical

system behavior are possible because the system is monitored by a set of sensors.

These predictions can be used in two ways: First, current data can be used to predict

future performance of the system. When predictions about the system turn out to be

different from the actual performance of the modeled system, the predictions may be

interpreted as discrepancies [Doyle et al., 1989; Dvorak & Kuipers, 1989]. Second, the

model can be used to determine whether future performance of the modeled system will

exhibit certain critical qualities (e.g., cascading alarms).

The focus of this report is to describe the SELMON simulator EDSE. The core principles

of EDSE are inherited from event-driven simulation [Banks & Carson, 1984]; the target ap-

plication domains originate in model-based reasoning of physical systems [Hayes, 1989].

Applications of model-based simulation are described elsewhere [Chien et al., 1992]. Ad-

ditionally, there are other model-based simulation paradigms, such as total envisionment

(which generates all possible states and state transitions of the system [Forbus, 1984]) and

attainable envisionment (which generates the possible behavior histories of a system from

a given state [Kuipers, 1986]).

This report provides an overview of the functionality of EDSE and the model-based

event-driven simulation paradigm on which the simulator is based. It is intended to

describe at a high level the key properties and algorithms of EDSE. Supplementary infor-

mation about building causal models with the modeling language EDSEL can be found in

[Charest, 1992].

The rest of this report is organized as follows: Section 2 describes the overall architec-

ture of the simulator. Section 3 describes synchronization and filtering techniques relevant

to systems monitoring. Section 4 outlines how EDSE stands with respect to open issues

of discrete event simulation and model-based reasoning. Section 5 summarizes the main

features of EDSE.

2 Architecture of EDSE

EDSE allows SELMON to make predictions about the future performance of a monitored

system by applying current data values to a model of the system. Specifically, the simulator

uses:

A behavioral model of the monitored system

The current state of the monitored system at time T

• A future time T'

to determine the predicted state of the monitored system at time T'. More specifically, the

state of the monitored system is represented by two types of information:



1. A set of quantities representing the current values for physical quantities at various

locations in the system.

2. An agenda of events which represent changes in quantities that are expected to occur

in the future.

Briefly, an event is a 5-tuple e = (m, q, v, 4, T) describing that a mechanism 7_ fired at

time 4' to set a quantity q to a value v at time 7-. An event is said to be created at time

and matured at time r. An agenda is simply a queue ordered by increasing values of 7.

Mechanisms are described below.

With respect to the event-driven simulation paradigm [Banks & Carson, 1984], the

simulated objects are quantities in EDSE. Message events are restricted to passing from

one quantity object to another as long as the latter quantity interacts with the former via a

mechanism. The application of EDSE to a specific physical system requires the definition of

a causal model - that is, a network of quantities interacting via mechanisms (see [Charest,

1992] for details). The mechanism interactions implicitly define all of the possible events

that can occur during simulation.

The simulation process is characterized by two phenomena: event consumption and

event creation. Event consumption occurs when the current time matches the time of one

or more events on the agenda. In this case the appropriate quantities are set to the values

prescribed by the event(s). Event creation occurs when quantities in the model change.

When a quantity in the model changes, all mechanisms associated with the quantity

are evaluated and thereby may cause new events to be added to the agenda. Event

consumption therefore induces event creation, and vice versa. In general, simulation

consists of quantity changes, followed by mechanism evaluation (event creation), followed

by more quantity changes (event consumption), and so on.

Interactions among quantities are modeled by mechanisms. A mechanism is a 4-tuple

m = (I, 3`,/5, q) describing how a set of input quantities ! determines the value of an output

quantity i q via the transfer function 3' and delay function/5. Thus, the mechanism specifies

when (through I and/5) and how (through I and -),) changes will occur for a quantity q.

During the event consumption phase of simulation, if a quantity q changes value then

all the mechanisms that use q as an input will be triggered for the next event creation phase.

That is, each mechanism m' = (/', %/5, q'), where q 6 I', will be marked in such a way that

an event will be created for the mechanism m' during the ensuing event creation phase.

An event e is created for each triggered mechanism by evaluating or firing the functions 3,

and/5 with respect to input quantities I and the simulation time _. When these functions
are fired the mechanism itself is also said to be fired. The resulting event ¢ is described by

the 5-tuple (m, q, v, _, 7-) where v is the result of firing 3' and 7- is the result of firing 5.

1To simplify explanation in this report, we assume a single output quantity for each mechanism. The
newest version of EDSE allows multiple output quantities and conditional mechanisms. For practical

purposes, providing multiple output quantities on a single mechanism allows the same behavior as would

constructing an identical mechanism for each output quantity. Conditional mechanisms specify conditions

over the set of input quantities I. These conditions must be satisfied in order for the mechanism to be fired.



2.1 Event Consumption and Event Creation

The simulation is defined by the event consumption and creation processes. We now

focus upon the details of these two processes. This section describes when event creation

and event consumption occur in the simulation algorithm.

Even t cons umption

An event e = (m, q, v,,¢,,., ¢, T) is consumed when its maturation time r coincides with

the current simulation time T. The processing of c consists of replacing the old value

Votd= V(q,T - 1) with the new value 'v,_ew indicated by the event. If Vol,_ is different

from v,,e,,, in the appropriate quantitative or qualitative sense then the event is propagated

by triggering every mechanism ra such that q is an input quantity of m. Figure 1 is a

pseudo-code description of the event consumption algorithm.

Event creation

Events are created when the simulator fires the triggered mechanisms. At that time, the

transfer function "), and delay function 5 of each triggered mechanism m = (I, % 6, q) are

evaluated to create an event e = (m, q, v, ¢, T) where ¢ is the current time, T = 5(1, ¢), and

v = 3'(1, ¢). The maturity of this event is either delayed until T or immediate, according

to the type of delay function 5. Figure 2 is a pseudo-code description of the event creation

algorithm.

There are two types of mechanism delay functions: explicit zero and implicit future. An

implicit future delay function means that the evaluation of the delay function will yield a

positive event delay. Currently, the event consumption algorithm forces all implicit future

delay functions to produce values that are at least one simulation timestep later than the
current simulation time. 2 This restriction allows the simulator to determine when event

consumption is complete for the current simulation time and therefore when the event

creation phase can start.

An explicit zero delay function means that whenever a mechanism is triggered at a

given simulation time T the mechanism will also be fired at T. Practically, this means that

during the event consumption phase, quantity value changes can lead some mechanisms

to be triggered and then immediately fired, thus interleaving event consumption and

event creation within a single simulation timestep.

2.2 Event Processing

The simulator is started at a time To, with the directive to run iteratively to a new time TN.

The simulator consumes and creates events on a global agenda. Figure 3 is a pseudo-code

description of the algorithm for processing one timestep during simulation. For each

timestep T such that To <_ T < TN, EDSE performs the following actions:

2Implementation note: Each simulation timestep corresponds to 1 second of real time for the simulated

system.

3



Given an agenda of events A

and the current simulation time T

Let .:%4= @

For each event e 6 A,

Let c = (Tn.,q,vneu,,_,T)

Let Void: ]](q,T- 1)

If ?;ne,,, ]A Vold then

Assign ])(q,T) the

For each mechanism

Trigger ?n'

Add m' to ;%4

value Vne._

m'=(l',7,6, q') where q6I'

Return the set of triggered mechanisms _

Figure 1: Event consumption in EDSE.

1. Consume all events scheduled to mature during the current timestep. This action

includes triggering mechanisms whose input quantities have changed.

2. For each explicit zero delay mechanism in the set of triggered mechanisms, create an

event that will mature during the current timestep and immediately fire the transfer

function to compute the new quantity value.

3. If there are still events scheduled to mature during the current timestep then go to

step 1. Otherwise, go to step 4.

4. For each implicit future delay mechanism in the set of triggered mechanisms 3 fire

the transfer and delay functions and then create an event that matures according to

the result of the delay function.

Schedule the new events according to their maturity..

6. Increment the simulation time 4 T.

3 Synchronization and Filtering

It is difficult to ensure that a causal model used with EDSE will predict the behavior of

the physical system with perfect accuracy. This lack of model perfection manifests itself

3Technically, at this point in the algorithm all of the triggered mechanisms must be implicit future delay
mechanisms.

4The next simulation time is defined by the maturation time of the next event (if any) in the agenda.



Given a set of triggered mechanisms .._

and an agenda of events A

and the current simulation time T

For each mechanism m6J_

Let m : (I, 7, 6, q)

Fire 7 and assign the result to v

Fire 6 and assign the result to T

Schedule the event e= (m,q,v,T,T) on A

Figure 2: Event creation in EDSE.

Given an agenda of events A

the current simulation time T

Let M=

Let AT_A such that e6AT

is an event scheduled to mature at T

While AT _

Remove an event e from AT

Consume the event ¢

Collect the resulting triggered mechanisms into M

Let ]k4T C jk4 such that m 6]k4T

is an explicit-zero delay mechanism

For each mechanism m 6Jk4T

Create an event ¢ = (m,q,v,T,T)

Add ¢ to AT

For each mechanism m6]k4--Jk4T

Create an event e : (m,q,v,T,T) where T > T

Figure 3: Processing a single timestep in EDSE.

as discrepancies between actual sensor data and the model predictions. Left unchecked,

these discrepancies may grow so large as to make model predictions useless. In order to

avoid this phenomenon, the SELMON simulator periodically synchronizes the simulation

state with observed sensor values.



Synchronization is a method of aligning the values of quantities in the model with
observed sensor values. That is, we explicitly assign the observed sensor values to the
appropriate quantities. This method assumesthat we have reasonableconfidence in the
sensor data. As an alternative, arbitrary user-specified functions can be used to access
past sensor values and values of other sensors to determine the synchronized value.
This synchronization occurs immediately before we begin the event processingalgorithm
described in Figure 3.

Unfortunately, synchronization in SELMONis incomplete in the sensethat the model
state isnot completely synchronized. Only thequantity values aresetto their correspond-
ing sensorvalues. Ideally, events in the agenda would also be recomputed to reflect the
new sensorreadings.

Another difficulty with synchronization is sensornoise. If sensornoisecausesasensor
to incorrectly report ananomalousvalue, synchronization may causethe model to predict
discrepant behaviors. In order to minimize this phenomenon, the simulator provides a
filtering protocol to decrease the impact of spurious sensor readings for particularly noisy

sensors.

The filtering protocol allows each sensor s that is associated with a quantity q in

the model to have its data values explicitly filtered as they are observed (i.e., before

synchronization). Filtering is accomplished by means of a function which transforms

a "raw" data value to the appropriate "filtered" value. Filter functions may perform

arbitrary transformations of raw data values, using the entire history of raw values for a

particular sensor as input. Typically, filtered values are the result of calculating a weighted

average of the last few raw data values.

The filtering protocol implemented in EDSE is subject to the following caveats:

If a sensor does not report a raw value, the sensor filter will generate a filtered value

for the sensor anyway. It has been noted that only those sensors which have reported

a value should be used to synchronize the model.

Consider a model where a quantity ql is associated with a sensor sl and q2 is asso-

ciated with a sensor s2. If there is a zero-delay mechanism m_,2 from ql to q2, it has

been noted that the mechanism ml.2 should not be used to infer a new value for q2

but rather the value of s2 should be used. This is consistent with the principle of

"trusting" the data as much as possible.

4 Open Issues

EDSE is subject to the open issues typical of discrete event simulation in general and

model-based simulation in particular. This section describes what these issues mean for

EDSE and, when applicable, what steps can be taken to address them.

Race conditions

A race condition occurs when two events el and e2 occur at the same simulation time

T and they both change the same quantity q. Which of the two event values (v_ from el or

6



v2 from e2) should be used to determine the value of the quantity V(q, T)? Alternatively,

should _'_ and e2 be fused to form a new event el,2 such that el,2 would be used instead of

el and e2 to change q? Such race conditions can potentially occur with implicit future and

explicit zero delays in any combination.

Currently, events are processed iteratively, one at a time (i.e., the simulation is sequen-

tial). This means that V(q, T) will be the value of the last event occurring at T that affects

q. This is a source of indeterminism in the simulation. In some cases of zero-delay events,

the race condition can be avoided by imposing constraints on the model (see below).

A better solution would fuse all of the events that occur at the same time and af-

fect the same quantity. This poses two problems. First, race conditions are generally

unpredictable; therefore, when one is detected, it may be necessary to "undo" some com-

putations, solve the race condition, and proceed again. Research in operating systems

addressed this problem by introducing the concept of virtual time [Jefferson, 1985; Jeffer-

son et aI., 1987], where the operating system allows independent processes to pursue their

computations, even though enforcing global consistency may force them to backtrack and

resume from an earlier state.

Second, race conditions are typically an artifact of the modelling language: some events

are defined to occur simultaneously because they are at the smallest granularity of the time

scale. A smaller set of race conditions comes from events occurring at different instants but

processed at the same time because of discretization. In either case, the resolution of race

conditions ultimately depends on a physical interpretation of the underlying phenomena.

In practice, we expect that prioritizing events (see below) will be sufficient in most cases.

Future events

When the delay function of an implicit future delay mechanism evaluates to zero, the

mechanism should be treated as an explicit zero delay mechanism. Currently, this issue

is avoided since implicit future delays are forced by the simulator to be at least as large

as one timestep. For the simulation of physical systems, this is not an issue as long as a

minimum time scale can be attributed to the underlying continuous physical phenomena

being modeled.

Zero-delay events

From a modeling standpoint, there are roughly two classes of mechanisms used to

model a physical system. The first class encodes the dynamics of the continuous physical

phenomena occurring in the system. The second class encodes the discrete control changes

that occur in the system. The former class of mechanisms typically has implicit future

delays since continuous physical phenomena take some time to propagate or produce any

effect. The latter class of mechanisms typically has explicit zero delays since control actions

are discrete and instantaneous relative to the continuous physical phenomena. However,

there is an implicit sequentiality in the simulation of explicit zero events due to the actual

propagation of these events in the network of mechanisms. This sequential propagation

of zero-delay events defines an artificial time scale that has no physical support; it is an

example of "mythical time"[de Kleer & Brown, 1984] in qualitative simulation.

The simulator introduces mythical time as it processes all the zero delay events in



some order before processing any future delay event. Currently, there is no provision

in the simulator to provide the user with control over the ordering of zero-delay events;

nevertheless, they are processed on a first-come first-served basis. To avoid race condition

problems, the modeling language may be augmented to force an a-priori order of process-

ing for mythical time. One approach would be to construct a list of zero-delay event types

defining a partial ordering in mythical time. This partial ordering would be enforced by

the simulator such that all zero-delay events of higher priority would be processed before

zero-delay events of lower priority until quiescence. _ This partial ordering of zero-delay

events does not solve the problem entirely: race conditions can still occur with zero-delay

events of the same priority. However, it does prevent race conditions across priority

levels. To that extent, it may be sufficient for a modeler to use this partial order to avoid

race conditions.

Ca usal consistency

To obtain accurate model predictions, it is necessary that the model reflect in its state

information the actual physical processes occurring in the physical system. Noisy data

and numerical errors, in particular, are typical factors leading to errors in state information.

Since the local scope of the models is narrowed down to components, such errors in state

information can result in globally inconsistent states.

For example, a fluid pipe is not always modelled as one component. Take the case

when a membrane pressure sensor is mounted on such a pipe. Then, the global model of

the pipe consists of three pipe models, and the middle one doubles as a pressure sensor

model. In these circumstances, a flow of small magnitude through the global pipe model

can well be tainted with round-off errors such that the flows in each of the three pipes are

not in the same global direction; this is a clear case of global model inconsistency despite

locally consistent models of the constituent components.

Recently, Forbus and Falkenhainer [1992] addressed this issue by adding a self-

monitoring module to their numerical simulators. The task of the self-monitoring module

is to detect and steer the simulation away from globally inconsistent states.

5 Summary

The SELMON simulator EDSE uses an event-driven paradigm to generate predictions of

future physical system performance from a model of the physical system and informa-

tion about the current system state. These predictions can be used to detect potential

discrepancies or to determine if future system behavior will exhibit critical qualities.

Model drift can cause a reasonably faithful model to eventually diverge from actual

system behavior over time. In order to deal with this issue, EDSE synchronizes the model

with observed sensor data. Also, filtering is used to deal with noisy data in some cases.

Several problem issues remain open in the current EDSE implementation.

SHere, quiescence at a given priority means all zero-delay events of that priority have been processed

and that all the zero-delay events created in the meantime have a lower priority.
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Appendix: EDSE Source Code

The following program listing presents the Lisp source code for a possible implemen-

tation of EDSE. The function simulate is the sole entry-point to the simulator. All of

the necessary data structure definitions (e.g., event, agenda) and some of the support

function definitions have been omitted in the interest of space.

(defun current-event (agenda timestamp)

"Return the first event on the agenda if it is scheduled

to happen on or after the given timestamp."

(declare (type agenda agenda)

(type fixnum timestamp)

(values (or event nil)))

(loop for current-event in (events-of agenda)

if (null-event-p current-event)

do (error "The agenda is empty,")

if (< (maturity current-event) timestamp)

do

(cerror "Ignore the mis-scheduled event."

"Current time is _a. _@

Event _a is scheduled to occur at _a."

timestamp

(name current-event)

(maturity current-event))

(warn "Skipping event _a."

(name current-event))

(pop (events-of agenda))

(deallocate-event current-event)

else return current-event

finally (error "The agenda is empty.")))

(defun split-agenda (agenda timestamp)

"Split the agenda with respect to the given timestamp.

Return two subagendas: events maturing at timestamp

and events maturing after timestamp."

(declare (type agenda agenda)

(type fixnum timestamp))

(loop with mature-events = (events-of agenda)

initially

(unless (equal* (maturity (first (events-of agenda)))

timestamp)

(error "Malformed agenda: the maturity of the

first event was expected to be _d."

timestamp))

for split on (events-of agenda) by #'cdr

as (first second rest) = split

while (and second (equal* (maturity second) timestamp))

finally

11



(shiftf (events-of agenda) (rest split) nil)

return (values (make-agenda mature-events) agenda)))

(defun schedule (pending-events agenda)

"Merge the pending-events into the agenda."

(declare (type agenda pending-events agenda)

(values agenda))

(merge 'list

(events-of agenda)

(sort pending-events #'< :key #'maturity)

#'< :key #'maturity)

agenda)

;;; Pending-mechanisms are passed in as a performance hack:

;;; PUSHNEW can be used to optimally add only those

;;; mechanisms which are not already on the list.

(defun mature (agenda pending-mechanisms timestamp)

"Pass the value of each event to the appropriate quantities

and mark as pending all of the output mechanisms from

those quantities."

(declare (type agenda agenda)

(type pending-mechanisms)

(type fixnum timestamp)

(values immediate-mechanisms pending-mechanisms))

(loop with immediate-mechanisms _ nil

for event in (events-of agenda)

do (loop for quantity in (outputs (mechanism event))

as change-p = (not (equal* (value quantity)

(value event)))

when change-p

do (loop for mechanism in (outputs quantity)

if (immediate-mechanism-p mechanism)

do (pushnew mechanism

immediate-mechanisms

:test #'eq)

else do (pushnew mechanism

pending-mechanisms

:test #'eq))

;;unconditionally

do (setf (value quantity) (value event)

(timestamp quantity) timestamp))

finally return (values immediate-mechanisms

pending-mechanisms)))

(defun propagate (pending-mechanisms timestamp)

"Create and return a list of events from the given

pending mechanisms."

12



(declare (type list pending-mechanisms)

(type fixnum timestamp)

(values pending-events))

(loop for mechanism in pending-mechanisms

when (compute-context-match mechanism timestamp)

collect (allocate-event mechanism timestamp)))

(defun simulate-immediate-events (agenda timestamp)

"Consume all of the events on the agenda which mature at

the given timestamp."

(declare (type agenda agenda)

(values agenda pending-mechanisms))

(loop with immediate-agenda

and immediate-mechanisms

and pending-mechanisms = ()

and pending-events

initially

(multiple-value-setq (immediate-agenda agenda)

(split-agenda agenda timestamp))

do

(multiple-value-setq

(immediate-mechanisms pending-mechanisms)

(mature immediate-agenda pending-mechanisms

timestamp))

(deallocate-agenda immediate-agenda)

while (and immediate-mechanisms

(setq pending-events

(propagate immediate-mechanisms

timestamp)))

do (setq immediate-agenda

(make-agenda pending-events))

finally return (values agenda pending-mechanisms)))

(defun simulate (instant limit disposition)

"Consume events from the global *agenda* until the

limit is reached."

(let ((timestamp (time instant))

(iterations 0))

(flet ((time-limit ()

(> timestamp limit))

(iterations-limit ()

(> iterations limit)))

(loop with limit-p = (ecase disposition

(:time #'time-limit)

(:iterations #'iterations-limit))

and pending-mechanisms

as event = (current-event *agenda* timestamp)

]3



while event

do

(setq timestamp (maturity event))

(incf iterations)

until (funcall limit-p)

do

(multiple-value-setq

(*agenda* pending-mechanisms)

(simulate-immediate-events *agenda*

timestamp))

(schedule (propagate pending-mechanisms

timestamp) *agenda*)

finally return *agenda*))))
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